Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(3): 105668, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272232

RESUMEN

G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors and a critical class of regulators of mammalian physiology. Also known as seven transmembrane receptors (7TMs), GPCRs are ubiquitously expressed and versatile, detecting a diverse set of endogenous stimuli, including odorants, neurotransmitters, hormones, peptides, and lipids. Accordingly, GPCRs have emerged as the largest class of drug targets, accounting for upward of 30% of all prescription drugs. The view that ligand-induced GPCR responses originate exclusively from the cell surface has evolved to reflect accumulating evidence that receptors can elicit additional waves of signaling from intracellular compartments. These events in turn shape unique cellular and physiological outcomes. Here, we discuss our current understanding of the roles and regulation of compartmentalized GPCR signaling.


Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , Animales , Membrana Celular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Espacio Intracelular/metabolismo , Activación Enzimática
2.
Nat Chem Biol ; 20(2): 151-161, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37500769

RESUMEN

G-protein-coupled receptors (GPCRs) can initiate unique functional responses depending on the subcellular site of activation. Efforts to uncover the mechanistic basis of compartmentalized GPCR signaling have concentrated on the biochemical aspect of this regulation. Here we assess the biophysical positioning of receptor-containing endosomes as an alternative salient mechanism. We devise a strategy to rapidly and selectively redistribute receptor-containing endosomes 'on command' in intact cells without perturbing their biochemical composition. Next, we present two complementary optical readouts that enable robust measurements of bulk- and gene-specific GPCR/cyclic AMP (cAMP)-dependent transcriptional signaling with single-cell resolution. With these, we establish that disruption of native endosome positioning inhibits the initiation of the endosome-dependent transcriptional responses. Finally, we demonstrate a prominent mechanistic role of PDE-mediated cAMP hydrolysis and local protein kinase A activity in this process. Our study, therefore, illuminates a new mechanism regulating GPCR function by identifying endosome positioning as the principal mediator of spatially selective receptor signaling.


Asunto(s)
Endosomas , Transducción de Señal , Transducción de Señal/fisiología , Endosomas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , AMP Cíclico/metabolismo , Fosforilación
3.
Biomolecules ; 13(10)2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37892234

RESUMEN

The D2 dopamine receptor (D2R) signals through both G proteins and ß-arrestins to regulate important physiological processes, such as movement, reward circuitry, emotion, and cognition. ß-arrestins are believed to interact with G protein-coupled receptors (GPCRs) at the phosphorylated C-terminal tail or intracellular loops. GPCR kinases (GRKs) are the primary drivers of GPCR phosphorylation, and for many receptors, receptor phosphorylation is indispensable for ß-arrestin recruitment. However, GRK-mediated receptor phosphorylation is not required for ß-arrestin recruitment to the D2R, and the role of GRKs in D2R-ß-arrestin interactions remains largely unexplored. In this study, we used GRK knockout cells engineered using CRISPR-Cas9 technology to determine the extent to which ß-arrestin recruitment to the D2R is GRK-dependent. Genetic elimination of all GRK expression decreased, but did not eliminate, agonist-stimulated ß-arrestin recruitment to the D2R or its subsequent internalization. However, these processes were rescued upon the re-introduction of various GRK isoforms in the cells with GRK2/3 also enhancing dopamine potency. Further, treatment with compound 101, a pharmacological inhibitor of GRK2/3 isoforms, decreased ß-arrestin recruitment and receptor internalization, highlighting the importance of this GRK subfamily for D2R-ß-arrestin interactions. These results were recapitulated using a phosphorylation-deficient D2R mutant, emphasizing that GRKs can enhance ß-arrestin recruitment and activation independently of receptor phosphorylation.


Asunto(s)
Quinasas de Receptores Acoplados a Proteína-G , Receptores Dopaminérgicos , Arrestinas/metabolismo , beta-Arrestinas/metabolismo , Quinasas de Receptores Acoplados a Proteína-G/metabolismo , Fosforilación , Isoformas de Proteínas/metabolismo , Receptores Dopaminérgicos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Células HEK293
4.
Mol Pharmacol ; 100(4): 372-387, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34353882

RESUMEN

ONC201 is a first-in-class imipridone compound that is in clinical trials for the treatment of high-grade gliomas and other advanced cancers. Recent studies identified that ONC201 antagonizes D2-like dopamine receptors at therapeutically relevant concentrations. In the current study, characterization of ONC201 using radioligand binding and multiple functional assays revealed that it was a full antagonist of the D2 and D3 receptors (D2R and D3R) with low micromolar potencies, similar to its potency for antiproliferative effects. Curve-shift experiments using D2R-mediated ß-arrestin recruitment and cAMP assays revealed that ONC201 exhibited a mixed form of antagonism. An operational model of allostery was used to analyze these data, which suggested that the predominant modulatory effect of ONC201 was on dopamine efficacy with little to no effect on dopamine affinity. To investigate how ONC201 binds to the D2R, we employed scanning mutagenesis coupled with a D2R-mediated calcium efflux assay. Eight residues were identified as being important for ONC201's functional antagonism of the D2R. Mutation of these residues followed by assessing ONC201 antagonism in multiple signaling assays highlighted specific residues involved in ONC201 binding. Together with computational modeling and simulation studies, our results suggest that ONC201 interacts with the D2R in a bitopic manner where the imipridone core of the molecule protrudes into the orthosteric binding site, but does not compete with dopamine, whereas a secondary phenyl ring engages an allosteric binding pocket that may be associated with negative modulation of receptor activity. SIGNIFICANCE STATEMENT: ONC201 is a novel antagonist of the D2 dopamine receptor with demonstrated efficacy in the treatment of various cancers, especially high-grade glioma. This study demonstrates that ONC201 antagonizes the D2 receptor with novel bitopic and negative allosteric mechanisms of action, which may explain its high selectivity and some of its clinical anticancer properties that are distinct from other D2 receptor antagonists widely used for the treatment of schizophrenia and other neuropsychiatric disorders.


Asunto(s)
Antineoplásicos/metabolismo , Antagonistas de los Receptores de Dopamina D2/metabolismo , Imidazoles/metabolismo , Piridinas/metabolismo , Pirimidinas/metabolismo , Receptores de Dopamina D2/metabolismo , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Células CHO , Cricetinae , Cricetulus , Antagonistas de los Receptores de Dopamina D2/química , Antagonistas de los Receptores de Dopamina D2/farmacología , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Imidazoles/química , Imidazoles/farmacología , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Estructura Secundaria de Proteína , Piridinas/química , Piridinas/farmacología , Pirimidinas/química , Pirimidinas/farmacología , Receptores de Dopamina D2/química
5.
Sci Signal ; 13(617)2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32019899

RESUMEN

Signaling bias is the propensity for some agonists to preferentially stimulate G protein-coupled receptor (GPCR) signaling through one intracellular pathway versus another. We previously identified a G protein-biased agonist of the D2 dopamine receptor (D2R) that results in impaired ß-arrestin recruitment. This signaling bias was predicted to arise from unique interactions of the ligand with a hydrophobic pocket at the interface of the second extracellular loop and fifth transmembrane segment of the D2R. Here, we showed that residue Phe189 within this pocket (position 5.38 using Ballesteros-Weinstein numbering) functions as a microswitch for regulating receptor interactions with ß-arrestin. This residue is relatively conserved among class A GPCRs, and analogous mutations within other GPCRs similarly impaired ß-arrestin recruitment while maintaining G protein signaling. To investigate the mechanism of this signaling bias, we used an active-state structure of the ß2-adrenergic receptor (ß2R) to build ß2R-WT and ß2R-Y1995.38A models in complex with the full ß2R agonist BI-167107 for molecular dynamics simulations. These analyses identified conformational rearrangements in ß2R-Y1995.38A that propagated from the extracellular ligand binding site to the intracellular surface, resulting in a modified orientation of the second intracellular loop in ß2R-Y1995.38A, which is predicted to affect its interactions with ß-arrestin. Our findings provide a structural basis for how ligand binding site alterations can allosterically affect GPCR-transducer interactions and result in biased signaling.


Asunto(s)
Simulación de Dinámica Molecular , Receptores Adrenérgicos beta 2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , beta-Arrestinas/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Células CHO , Cricetinae , Cricetulus , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Humanos , Ligandos , Modelos Moleculares , Mutación , Unión Proteica , Dominios Proteicos , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/genética , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , beta-Arrestinas/química , beta-Arrestinas/genética
6.
Pharmacol Biochem Behav ; 186: 172766, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31470021

RESUMEN

A variety of neural systems are involved in the brain bases of tobacco addiction. Animal models of nicotine addiction have helped identify a variety of interacting neural systems involved in the pathophysiology of tobacco addiction. We and others have found that drug treatments affecting many of those neurotransmitter systems significantly decrease nicotine self-administration. These treatments include dopamine D1 receptor antagonist, histamine H1 antagonist, serotonin 5HT2C agonist, glutamate NMDA antagonist, nicotinic cholinergic α4ß2 partial agonist and nicotinic cholinergic α3ß4 antagonist acting drugs. It may be the case that combining treatments that affect different neural systems underlying addiction may be more efficacious than single drug treatment. In the current study, we tested the interactions of the D1 antagonist SCH-23390 and the serotonin 5HT2c agonist lorcaserin, both of which we have previously shown to significantly reduce nicotine self-administration. In the acute interactions study, both SCH-23390 and lorcaserin significantly reduced nicotine self-administration when given alone and had additive effects when given in combination. In the chronic study, each drug alone caused a significant decrease in nicotine self-administration. No additive effect was seen in combination because SCH-23390 given alone chronically was already highly effective. Chronic administration of the combination was not seen to significantly prolong reduced nicotine self-administration into the post-treatment period. This research shows that unlike lorcaserin and SCH-23390 interactions when given acutely, when given chronically in combination they do not potentiate or prolong each other's effects in reducing nicotine self-administration.


Asunto(s)
Nicotina/administración & dosificación , Receptor de Serotonina 5-HT2C/fisiología , Receptores de Dopamina D1/fisiología , Autoadministración , Animales , Benzazepinas/farmacología , Femenino , Ratas , Ratas Sprague-Dawley , Tabaquismo/rehabilitación
7.
Mol Pharmacol ; 94(4): 1197-1209, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30068735

RESUMEN

The D1 dopamine receptor is linked to a variety of neuropsychiatric disorders and represents an attractive drug target for the enhancement of cognition in schizophrenia, Alzheimer disease, and other disorders. Positive allosteric modulators (PAMs), with their potential for greater selectivity and larger therapeutic windows, may represent a viable drug development strategy, as orthosteric D1 receptor agonists possess known clinical liabilities. We discovered two structurally distinct D1 receptor PAMs, MLS6585 and MLS1082, via a high-throughput screen of the NIH Molecular Libraries program small-molecule library. Both compounds potentiate dopamine-stimulated G protein- and ß-arrestin-mediated signaling and increase the affinity of dopamine for the D1 receptor with low micromolar potencies. Neither compound displayed any intrinsic agonist activity. Both compounds were also found to potentiate the efficacy of partial agonists. We tested maximally effective concentrations of each PAM in combination to determine if the compounds might act at separate or similar sites. In combination, MLS1082 + MLS6585 produced an additive potentiation of dopamine potency beyond that caused by either PAM alone for both ß-arrestin recruitment and cAMP accumulation, suggesting diverse sites of action. In addition, MLS6585, but not MLS1082, had additive activity with the previously described D1 receptor PAM "Compound B," suggesting that MLS1082 and Compound B may share a common binding site. A point mutation (R130Q) in the D1 receptor was found to abrogate MLS1082 activity without affecting that of MLS6585, suggesting this residue may be involved in the binding/activity of MLS1082 but not that of MLS6585. Together, MLS1082 and MLS6585 may serve as important tool compounds for the characterization of diverse allosteric sites on the D1 receptor as well as the development of optimized lead compounds for therapeutic use.


Asunto(s)
Regulación Alostérica/fisiología , Sitio Alostérico/fisiología , Receptores Dopaminérgicos/metabolismo , Animales , Células CHO , Cricetulus , AMP Cíclico/metabolismo , Dopamina/metabolismo , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Humanos , Transducción de Señal/fisiología , beta-Arrestinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...